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 This research discusses the performance of quantile regression and Bayesian 
quantile regression methods. Quantile regression uses parameter estimation by 
maximizing the value of the likelihood function, while Bayesian quantile regression 
uses parameter estimation with the Bayesian concept. The Bayesian concept in 
question looks for solutions from the posterior distribution with Gibbs Sampling. 
The purpose of the study is to compare the two methods. The data used is 
simulated data with a total of 100 generated data. The results obtained by the 
Bayesian quantile regression method are superior to the indicator used MSE with 
the result of 1.7445. The smallest MSE value is obtained in the model that is in 
quantile of 0.5. 
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INTRODUCTION 

Regression analysis is a statistical method used to determine the relationship between one 
independent variable (independent) and one or more dependent variables (dependent) [1],[2], [3],[4]. 
Through this approach, researchers can predict the value of the dependent variable based on the value of 
the independent variable, as well as evaluate how strong and significant the relationship between them is. 
Regression analysis is often used in various fields such as economics, business, and social sciences for data-
driven decision-making. By utilizing regression models, patterns and trends in data can be identified more 
systematically and objectively. 

The classical assumptions that must be met in regression analysis are important conditions that 
ensure the validity of the model estimation results. These assumptions include residual normality, 
homoscedasticity (constant residual variance), absence of autocorrelation, absence of multicollinearity, and 
linear relationship between independent and dependent variables. If these assumptions are met, the 
regression parameter estimates will be BLUE (Best Linear Unbiased Estimator), which means they have 
high efficiency and accuracy in predicting the value of the dependent variable. Violation of classical 
assumptions can lead to misleading conclusions in data-based decision making [5],[6]. 

Quantile regression is a statistical analysis method used to understand the relationship between the 
independent variable and the dependent variable at various quantile points of the data distribution, rather 
than just at the mean like ordinary linear regression [6],[7]. This technique is particularly useful when data 
has outliers, non-normal distributions, or when the relationship between variables is different at different 
quantile levels. By using quantile regression, researchers can get a more complete picture of the effect of the 
independent variable on the entire distribution of the dependent variable. This allows for more flexible 
analysis and is robust to various forms of data irregularities.  
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The main advantage of quantile regression compared to classical regression is its ability to provide 
a more complete picture of the relationship between independent and dependent variables, not only at the 
mean, but also at various points in data distribution. Classical regression, like ordinary linear regression, only 
models the mean of the dependent variable, making it less effective when the data contains outliers or non-
normal distribution [8]. In contrast, quantile regression is more robust to outliers and can reveal different 
dynamics at different quantiles, such as differences in the effect of variables on groups with low or high 
values. This makes quantile regression very useful in the analysis of heterogeneous or asymmetric data. One 
disadvantage of quantile regression is its sensitivity to multicollinearity among the independent variables, 
which may cause the estimation results to be unstable or difficult to interpret. In addition, quantile regression 
also requires a large sample size to produce reliable estimates, especially when estimating extreme quantiles 
(such as the 5th or 95th quantile). The calculation process is also more complex than ordinary linear 
regression, as it does not have a closed analytic solution and relies on numerical methods, which requires 
more computational time. The weaknesses of quantile regression can be overcome with Bayesian quantile 
regression.  

Bayesian quantile regression is a statistical approach that combines quantile regression methods 
with Bayesian inference principles to model the relationship between independent variables and various 
quantiles of the dependent variable distribution [9]. In this method, parameter uncertainty is accounted for 
through the posterior distribution, allowing for more flexible and informative estimation than classical 
quantile regression. This approach is particularly useful when the residual distribution is not normal or when 
significant outliers affect the average regression result. By using priors and posteriors, Bayesian quantile 
regression provides a powerful probabilistic framework for the analysis of heterogeneous and asymmetric 
data [10]. 

Bayesian quantile regression combines traditional quantile regression principles with a Bayesian 
framework using Asymmetric Laplace Distribution (ALD) density functions as the base likelihood. The 
seminal approach by Yu and Moyeed [11], introduced the ALD model to estimate quantiles by assigning 
priors to the regression coefficients, thereby allowing complete probabilistic inference and credible intervals 
for the quantile parameters [12]. Since then, various developments have emerged, including hierarchical 
quantile regression for multilevel data, dynamic quantile regression models for time series, and Bayesian 
spatial models to handle space dependencies. MCMC methods, such as Gibbs sampling and Metropolis 
Hastings, are often used to extract posterior samples, while variational Bayes techniques are gaining 
popularity to speed up computation on large datasets. In addition, the integration of penalty priors, such as 
Laplace supports variable selection and regularization, making Bayesian quantile regression a flexible tool 
for robust analysis under various conditions of heteroscedasticity and outliers [13]. 

 

METODS 

The research to achieve the stated objectives. The approach was designed to ensure the validity and 
reliability of the results, taking into account the context and characteristics of the research data. 
 
1. Quantile Regression 

Quantile Regression (QR) is a method that estimates a distribution of data across different quantiles [14]. 
Regression is Quantile Regression (QR) is a regression technique used to estimate the relationship between 
an independent variable and a quantile of the distribution of the dependent variable. Suppose 
𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑛)′is a vector the dependent variable and  𝒙 = ( 𝑥1, 𝑥2, … , 𝑥𝑘)′ is the independent 

variable, then the 𝜏𝑡ℎ is quantile, for  0 < 𝜏 < 1, if n samples and k predictors for 𝑖 = 1,2, … , 𝑛 is formula 
below [7]:  

 

𝑦𝑖 = 𝛽0𝜏 + 𝛽1𝜏𝑥𝑖1 + 𝛽2𝜏𝑥𝑖2 + ⋯ + 𝛽𝑘𝜏𝑥𝑖𝑘 + 𝜀𝑖 (1) 

 

With 𝜷(𝜏) as the parameter vector and 𝜺 as the residual vector. The conditional quantile function 

𝜏𝑡ℎ is 𝑄𝜏(𝒚|𝒙𝒊) = 𝒙𝒊
′𝜷𝝉, to estimate 𝜷�̂� ekuivalent with minimize the equation below[15]:  
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∑ 𝜌𝜏(𝑦𝑖 − 𝒙𝒊
′𝜷𝝉)

𝑛

𝑖=1

. 
 

(2) 

for 𝜌𝜏(𝑢) = 𝑢(𝜏 − 𝐼(𝑢 < 0))is the loss function with the equation [16]:  

𝜌𝜏(𝜖) = 𝜀(𝜏𝐼(𝜀 ≥ 0) − (1 − 𝜏)𝐼(𝜀 < 0)).                                          
(2. 3) 

𝐼 ( . ) is an indicator function, which has a value of 1 when 𝐼 ( . ) is true dan 0 otherwise.  
 

 
2. Bayesian  

Bayes theorem is the foundation of the Bayesian method, developed by Thomas Bayes in the 18th 
century. This theorem describes how we can update the probability of a hypothesis or parameter based on 
newly obtained evidence. Bayes theorem is formulated by equation below:  

𝑃((𝐴|𝐵) =
𝑃((𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
  

               (3)                                            

Where: 

𝑃((𝐴|𝐵) is posterior distribution 

𝑃((𝐵|𝐴) is likelihood function 

𝑃(𝐴) is prior distribution   

𝑃(𝐵) is probabilitas marginal (total probability from data (B) not depent to A.  
 

Definition 1. [17] Joint probability density function of random variables 𝑋1, 𝑋2, … , 𝑋𝑛 calculated at 

𝑥1, 𝑥2, … , 𝑥𝑛 is 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛|𝛽) which is the likelihood function. For a given value of 𝑥1, 𝑥2, … , 𝑥𝑛 the 

likelihood function is a function of the parameter 𝛽 which can be denoted by 𝐿(𝛽). If 𝑋1, 𝑋2, … , 𝑋𝑛 are 

mutually independent random samples of 𝑓(𝑥; 𝛽) then:  
 
 

𝐿(𝛽) = 𝑓(𝑥1; 𝛽) 𝑓(𝑥2; 𝛽) … 𝑓(𝑥𝑛;  𝛽)                                       

= ∏ 𝒇(𝒙𝒊, 𝜷)

𝒏

𝒊=𝟏

 

        (4) 

 

The prior distribution is the initial distribution that provides information about the parameters to be 
estimated. In estimating a parameter value, the prior distribution can be chosen subjectively by the 
researcher. The prior distribution is divided into two, namely [18],[19]:  

a. Related to the distribution form of the results of identifying the data pattern obtained from the 
likelihood function, namely:  
1. Conjugate prior distribution. This prior distribution is determined based on the choice of 

priority in a model considering the likelihood function.  
2. Non-conjugate prior distribution. Giving priors to the model ignores the pattern of forming 

the likelihood function. 
b. Related to previous information related to the determination of each parameter in the prior 

distribution pattern, namely:  
1. Informative prior distribution. This prior distribution refers to the assignment of parameters from the 

prior distribution that has been selected, both the conjugate prior distribution and the non-conjugate 
prior. 

2. Non-informative prior distribution. This prior distribution is not based on existing data or a prior 
distribution that contains no information about the parameters.  

Definition 2. The conditional probability density function of the parameter 𝛽 given observations  𝑥 =
𝑥1, 𝑥2, … , 𝑥𝑛, is expressed as the posterior probability density function given by [20]: 
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𝑓(𝛽|𝑥) =
𝐿(𝛽)𝑓(𝜷)

∫ 𝐿(
∞

−∞
𝛽)𝑓(𝛽)𝑑𝛽

 
(5) 

Since the function in the denominator tends to be constant because it does not depend on the value of β, 
the posterior probability density function can be written as follows [20]: 

𝑓(𝛽|𝑥) ∝ 𝐿(𝛽)𝑓(𝜷)                                   (6) 

Definition 3: [21] The mean of the posterior distribution 𝑓(𝛽|𝑥) expressed by �̂� is referred to as the Bayes 

estimator for 𝛽. 
 
 
3. Bayesian Quantile Regression 

The Bayesian concept above will be used as the basis for estimating parameters in the Bayesian 
concept. The Bayes method combines the likelihood function with the prior distribution of the parameters 
to obtain the posterior distribution which is the basis for estimating the parameters. Bayesian quantile 
regression method (BQR) is a combination of quantile regression method with Bayesian approach. The 
combination [22]  suggested Bayesian quantile regression combines traditional quantile regression principles 
with a Bayesian framework through the use of Asymmetric Laplace Distribution (ALD) density functions 
as the base likelihood. The ALD distribution is one of the continuous probability distributions. A random 

variable 𝜖 with ALD distribution with likelihood density function 𝑓(𝜖), namely [11]:  
 

              𝑓𝜏(𝜖) = 𝜏(1 − 𝜏)𝑒𝑥𝑝 (−𝜌𝜏(𝜖))                                                                                (7) 
  

With 0 < 𝜏 < 1 and 𝜌𝜏 is a loss function with as the error of the estimation and is an indicator 

function. Given an observation 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛)  to incorporate the quantile regression method into the 

Bayesian approach in estimating the parameters 𝛽  ALD is used as the likelihood function which is expressed 
as follows:  

 

𝐿(𝛽) = 𝜏𝑛(1 − 𝜏)𝑛𝑒𝑥𝑝{− ∑ 𝜌𝜏(𝑦𝑖 − 𝑥𝑖
′𝛽𝑛

𝑖=1 }                                                                        (8) 
 

The posterior distribution 𝛽 of is obtained by multiplying the likelihood function in equation (8) with 

the posterior distribution so that the posterior 𝛽  distribution is 𝑝(𝛽) obtained as follows: 
 

𝑓(𝑦) ∝ 𝐿(𝛽)𝑝(𝛽) 
 

                      = 𝜏𝑛(1 − 𝜏)𝑛 exp{− ∑ 𝜌𝜏(𝑦𝑖 − 𝑥𝑖
′𝛽𝑛

𝑖=1 }𝑝(𝛽)                                                   (9) 
 
In determining the posterior distribution for the estimated parameters on the use of ALD as a 

likelihood function for the data directly is difficult to solve analytically [15]. To overcome this difficulty, a 
numerical approach is used with the help of the MCMC (Markov Chain Monte Carlo) algorithm which is 
not only effectively used but also able to overcome complex analytical integration [12][23]. MSE stands for 
Mean Squared Error,  It is a common metric used to measure the average of the squares of the errors that 
is, the average squared difference between the predicted values and the actual values.below [14][20]: 

 

                                          𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1                               (10) 

 
Where 𝑦𝑖 is the value of the i-th observation and 𝑦

�̂�
 is the estimated value of the i-th estimation result. 

 

RESULT AND DISCUSSION  

1. Data 
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This study consist of five independent variables ( 2𝑋1, 3𝑋2, 1.5𝑋2, 2𝑋4 and 0.5𝑋5) and one dependent 

variable (Y). Where the independent variables (𝑋1, 𝑋2 , 𝑋3, 𝑋4 and 𝑋5)) are stochastic. The independent 

variables 𝑋1and 𝑋2 spread according to the exponential distribution with parameter 𝜃, (𝑋1, 𝑋2~𝐸𝑘𝑠𝑝(𝜃 =
1). The independent variables 𝑋3  spread according to the standard Normal distribution 𝑋3~𝑁(0,1). With 

𝑒~𝜒2(𝑣 = 20). Simulated 100 data by Software R. Variables 𝑋4, 𝑋5~𝑡(𝑣 = 20), so that the dependent 
variable can be written as: 

𝑌 = 2𝑋1 + 3𝑋2+1.5𝑋3+2𝑋4+ 0.5𝑋5 + 𝑒 
 

2. Estimated parameter model of quantile regression method  
The results of parameter 𝛽

0
, 𝛽1, 𝛽2, 𝛽3, 𝛽4 dan 𝛽

5
 estimation using quantile regression will be 

presented in the following Table 1, with the quantiles - 𝜏 =0.05, 0.25, 0.50, 0.75 dan 0.95.  
 

Table 1. Parameter Value of 𝛽 for QR for each – 𝜏 
Variabel Parameters  L.CredIntv U. CredIntv Confidence Interval 

(95%) 

   𝜏 = 0.05   

Intercept 𝛽0 0.0148 -0.0489 0.0234 0.0723 

𝑋1 𝛽1 1.9974* 1.8057 2.0071 0.2014 

𝑋2 𝛽2 2.9952* 2.9952 3.0028 0.0076 

𝑋3 𝛽3 1.4972* 1.4600 1.5468 0.0868 

𝑋4 𝛽4 1.9950* 1.9854 2.0024 0.0170 

𝑋5 𝛽5 0.5046* 0.4739 0.5075 0.0336 

   𝜏 = 0.25   

Intercept 𝛽0 0.0638* 0.0128 0.2627 0.2499 

𝑋1 𝛽1 2.0039* 1.9255 2.0865 0.1610 

𝑋2 𝛽2 3.0565* 2.9098 3.1225 0.2127 

𝑋3 𝛽3 1.5000* 1.3049 1.5309 0.2260 

𝑋4 𝛽4 2.0202* 1.9319 2.0441 0.1122 

𝑋5 𝛽5 0.5257* 0.4425 0.5589 0.1164 

   𝜏 = 0.5   

Intercept 𝛽0 0.5572* 0.3978 0.8441 0.4463 

𝑋1 𝛽1 1.9636* 1.9073 2.1119 0.2046 

𝑋2 𝛽2 3.0765* 2.8029 3.4392 0.6363 

𝑋3 𝛽3 1.4016* 1.1688 1.5209 0.3521 

𝑋4 𝛽4 2.0784* 1.8669 2.2495 0.3826 

𝑋5 𝛽5 0.4272* 0.2067 0.6575 0.4508 

   𝜏 = 0.75   

Intercept 𝛽0 0.9814* 0.6236 2.2946 1.6710 

𝑋1 𝛽1 2.0508* 1.7865 2.4954 0.7089 

𝑋2 𝛽2 3.2681* 2.9332 3.5559 0.6227 

𝑋3 𝛽3 1.5076* 1.3283 1.8226 0.4943 

𝑋4 𝛽4 2.2309* 1.8404 2.4938 0.6534 

𝑋5 𝛽5 0.3270 -0.0414 0.5322 0.5736 

   𝜏 = 0.95   

Intercept 𝛽0 3.1015* 1.7418 4.2802 2.5384 

𝑋1 𝛽1 1.6082* 1.4425 4.8792 3.4367 

𝑋2 𝛽2 3.2266* 2.3092 3.3327 1.0235 

𝑋3 𝛽3 1.6844* 0.5917 2.6484 2.0567 

𝑋4 𝛽4 1.9809* 0.5609 2.8455 2.2846 

𝑋5 𝛽5 0.5513 -0.2797 1.5837 1.8634 

* Significantly at 𝛼 = 0.05 
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In the table above, the significant parameters in each quantile are different, this can be seen from the 

smallest confidence interval of each parameter in each quantile. At quantiles 0.05, 0.25 and 0.5, the variable 

(𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑎𝑛𝑑 𝑋5) significant because not past the zero. But 𝑋5 in quantile 0.75 and 0.95 not 

significant, we can see the confidence interval (CI) past zero. Significant at alpha (𝛼 = 0.05.) 
 

3. Estimated parameter model of Bayesian quantile regression method  
This stage, the estimation of model parameters using the Bayesian quantile regression (BQR) method 

with 5000 iterations and 1000 burn-ins can be seen in the table 2 below.  
 

Table 2. Estimated Value of 𝛽 for BQR method in quantile – 𝜏 
Variabel Parameters  L.CredIntv U. CredIntv Confidence Interval 

(95%) 

   𝜏 = 0.05   

Intercept 𝛽0 -0.0126 -0.0885 0.0511 0.1396 

𝑋1 𝛽1 1.9993* 1.9462 2.0319 0.0857 

𝑋2 𝛽2 3.0054* 2.9456 3.0494 0.1038 

𝑋3 𝛽3 1.5273* 1.4704 1.6077 0.1373 

𝑋4 𝛽4 2.0038* 1.9596 2.0459 0.0863 

𝑋5 𝛽5 0.4791* 0.4164 0.5275 0.1111 

   𝜏 = 0.25   

Intercept 𝛽0 0.1533* 0.0144 0.3028 0.2884 

𝑋1 𝛽1 1.9897* 1.8824 2.0887 0.2063 

𝑋2 𝛽2 3.0165* 2.9274 3.1101 0.1827 

𝑋3 𝛽3 1.5630* 1.4585 1.6640 0.2055 

𝑋4 𝛽4 1.9926* 1.9140 2.0724 0.1584 

𝑋5 𝛽5 0.4157* 0.3200 0.5254 0.2054 

   𝜏 = 0.5   

Intercept 𝛽0 0.4643* 0.2072 0.7296 0.5224 

𝑋1 𝛽1 1.9793* 1.8244 2.1455 0.3211 

𝑋2 𝛽2 3.0188* 2.8753 3.2008 0.3255 

𝑋3 𝛽3 1.5591* 1.3927 1.7311 0.3384 

𝑋4 𝛽4 1.9632* 1.8271 2.0981 0.2710 

𝑋5 𝛽5 0.4439* 0.2970 0.5985 0.3015 

   𝜏 = 0.75   

Intercept 𝛽0 1.6645* 1.1123 2.1739 1.0616 

𝑋1 𝛽1 1.8761* 1.6129 2.1551 0.5422 

𝑋2 𝛽2 2.9031* 2.6919 3.1926 0.5007 

𝑋3 𝛽3 1.6272* 1.2654 1.9789 0.7135 

𝑋4 𝛽4 1.8294* 1.4907 2.1689 0.6782 

𝑋5 𝛽5 0.7068* 0.4263 1.0245 0.5982 

   𝜏 = 0.95   

Intercept 𝛽0 2.8614* 2.3466 3.3776 1.0310 

𝑋1 𝛽1 1.8934* 1.6544 2.3141 0.6597 

𝑋2 𝛽2 3.1141* 2.7793 3.4560 0.6767 

𝑋3 𝛽3 1.7157* 1.2327 2.4272 1.1945 

𝑋4 𝛽4 1.3001* 0.9185 1.7440 0.8255 

𝑋5 𝛽5 0.7603* 0.4558 1.0473 0.5915 

* Significantly at 𝛼 = 0.05 
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In the Table 2 above, variable 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑎𝑛𝑑 𝑋5 significant in all because not past the zero. 

Significant at alpha (𝛼 = 0.05). Then we will compare the model QR and BQR with see the smallest MSE. 
Tabel 3 shows Quantile regression method and Bayesian quantile regression method heve value MSE.  

 
Table 3. MSE Value 

Quantil Regression (QR) and Bayesian Quantil Regression (BQR) 

 
Quantile 

MSE 

QR BQR 

0.05 3.5121 2.4459 

0.25 3.2907 2.1519 

0.5 2.7026 1.7445 

0.75 2.6142 1.7549 

0.95 6.1765 5.7346 

 
Table 3 informs to us, the Bayesian quantile regression method (BQR) has the smallest MSE value 

compared to quantile regression (QR), namely at quantile 0.5 in the BQR method of 1.7445. So that the 
best model chosen is: 

 

�̂� = 0.4643 + 1.9793𝑋1 + 3.0188𝑋2 + 1.5591𝑋3 + 1.9632𝑋4 + 0.4439𝑋5 
 
Next, evaluate the convergence and normality of each parameter of the model at quantiles that have 

the smallest MSE value of the BQR method. The convergence of parameters can be seen from the trace 
plot and density plot. The results of the trace plot can be seen in the figure below, namely at quantile 0.5. 

 

 
Figure 1. Trace Plot of parameter 𝛽

1
 for 𝜏 = 0.5 

 

 
Figure 2. Trace Plot of parameter 𝛽

2
 for 𝜏 = 0.5 

 
Figure 1 and Figure 2 shows the parameter is within the upper and lower bounds. Density plot has 

been normal distribution can be seen in the figure below:  

 
Figure 3. Density Plot of parameter 𝛽

1
 for 𝜏 = 0.5 
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Figure 4. Density Plot of parameter 𝛽

2
 for 𝜏 = 0.5 

 
Figure 3 and Figure 4 shows convergence to normal distributed curve. Parameters in quantil 0.5 is 

convergent. From figure 1, 2,3, and 4 trace plot and density plot give model has satisfied the criterion of 
convergence to normal distribution.  

 

 
CONCLUSION AND SUGGESTIONS 

The results obtained by the Bayesian quantile regression method are superior to the indicator used MSE 
with the result of 1.7445. The smallest MSE value is obtained in the model that is in quantile 0.5. 

�̂� = 0.4643 + 1.9793𝑋1 + 3.0188𝑋2 + 1.5591𝑋3 + 1.9632𝑋4 + 0.4439𝑋5 

 

The result informs us that selected parameters model in quantil 0.5 is convergent and trace plot, 
density plot give model has satisfied the criterion of convergence to normal distribution.  
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