Application of Prim Algorithm to an Electricity Network in Cimahi

Authors

  • Anie Lusiani Politeknik Negeri Bandung https://orcid.org/0000-0003-2151-5110
  • Euis Sartika Politeknik Negeri Bandung
  • Neneng Nuryati Politeknik Negeri Bandung
  • Ida Suhartini Politeknik Negeri Bandung

DOI:

https://doi.org/10.25217/numerical.v9i1.6072

Keywords:

electricity network, optimization, prim algorithm, weighted connected graph

Abstract

Prim's algorithm is an algorithm that is applied to determine the minimum spanning tree to optimize a network. In this research, the Prim algorithm will be applied to minimize the length of electrical cables used in an electricity distribution network. The data needed to build an initial model is the number of electricity poles on an electricity network, the position of the electricity poles, and the length of the cable connecting the two electricity poles. The electricity network used is in the management area of PT. PLN UP3 Cimahi, West Java. This initial model is represented by a weighted connected graph, where an electricity substation or an electricity pole is a vertex and an electricity cable connecting two electricity poles is an edge in the graph. The weight of this graph is the length of the cable. After the Prim algorithm is run on this graph, the minimum spanning tree is obtained which is the shortest length of electrical cable needed to connect all electricity poles, namely 1258.05 meters. When compared to the length of the existing cable that is being used, which is 1275.86 meters, the results of this study provide a cable efficiency of 17.81 meters. Thus, it is expected to provide cost efficiency arising from the price of the cable and its installation costs. This result is expected to provide input to PT. PLN UP3 Cimahi as an energy efficiency effort launched by the government.

References

Akitaya, H. A., Biniaz, A., Bose, P., Carufel, J. L., Maheshwari, A., Silveira, L. F. S. X., & Smid, M. (2021). The minimum moving spanning tree problem Algorithms and Data Structures: 17th International Symposium, WADS 2021, Virtual Event, August 9–11, 2021, Proceedings 17, 15–28.

Bossek, J., & Neumann, F. (2021, 2021). Evolutionary diversity optimization and the minimum spanning tree problem Proceedings of the Genetic and Evolutionary Computation Conference, 198–206.

Carrabs, F., & Gaudioso, M. (2021). A Lagrangian approach for the minimum spanning tree problem with conflicting edge pairs. Networks, 78(1), 32–45.

Chartrand, G., Lesniak, L., & Zhang, P. (2016). Graphs & Digraphs. Textbooks in Mathematics. CRC Press.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to algorithms. MIT press.

Dey, A., & Pal, A. (2016). Prim's algorithm for solving minimum spanning tree problem in fuzzy environment. Annals of Fuzzy Mathematics and Informatics, 12(3), 419–430.

Dey, S., Jallu, R. K., & Nandy, S. C. (2021). On the minimum spanning tree problem in imprecise set-up. http://arxiv.org/abs/2104.04229

Djafar, I., & Ibrahim, A. (2017). Implementasi Pohon Merentang Minimum Dalam Menentukan Prioritas Pemeliharaan Jalur Jalan Kota Dengan Biaya Minimal. Jurnal Digit: Digital of Information Technology, 1(2).

Doryanizadeh, V., Keshavarzi, A., Derikvand, T., & Bohlouli, M. (2021). Energy Efficient Cluster Head Selection in Internet of Things Using Minimum Spanning Tree (EEMST). Applied Artificial Intelligence, 35(15), 1777-1802. https://doi.org/10.1080/08839514.2021.1992961

Iqbal, M., Siahaan, A. P. U., Purba, N. E., & Purwanto, D. (2017). Prim's Algorithm for Optimizing Fiber Optic Trajectory Planning. Int. J. Sci. Res. Sci. Technol, 3(6), 504–509.

Krishna, G. S., & Kumar, D. D. (2021). An Enhanced Cluster-based Energy Efficient Optimal Routing in WSN. International Journal of Scientific Research in Science and Technology.

Kritikos, M. N., & Ioannou, G. (2021). The capacitated minimum spanning tree problem with arc time windows. Expert Systems with Applications, 176. https://doi.org/10.1016/j.eswa.2021.114859

Łukaszewski, A., Nogal, Ł., & Januszewski, M. (2022). The Application of the Modified Prim’s Algorithm to Restore the Power System Using Renewable Energy Sources. Symmetry, 14(5). https://doi.org/10.3390/sym14051012

Lusiani, A., Purwaningsih, S. S., & Sartika, E. (2023a). Dijkstra Algorithm in Determining the Shortest Route for Delivery Service by J&T Express in Bandung. Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika, 4(2), 940-948. https://doi.org/10.46306/lb.v4i2.337

Lusiani, A., Purwaningsih, S. S., & Sartika, E. (2023b). Tsp Method Using Nearest Neighbor Algorithm at Pt. J&T Express in Bandung. Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika, 4(3), 1560-1568. https://doi.org/10.46306/lb.v4i3.449

Lusiani, A., Sartika, E., Binarto, A., Habinuddin, E., & Azis, I. (2021). Determination of the Fastest Path on Logistics Distribution by Using Dijkstra Algorithm. In 2nd International Seminar of Science and Applied Technology (ISSAT 2021 (pp. 246–250).

Majumder, S., Barma, P. S., Biswas, A., Banerjee, P., Mandal, B. K., Kar, S., & Ziemba, P. (2022). On Multi-Objective Minimum Spanning Tree Problem under Uncertain Paradigm. Symmetry, 14(1). https://doi.org/10.3390/sym14010106

Medak, J. (2018). Review and Analysis of Minimum Spanning Tree Using Prim's Algorithm. International Journal of Computer Science Trends and Technology, Volume, 6.

Niluminda, K. P. O., & Ekanayake, E. (2022). An approach for solving minimum spanning tree problem using a modified ant colony optimization algorithm. American Journal of Applied Mathematics, 10(6), 223.

Pop, P. C. (2020). The generalized minimum spanning tree problem: An overview of formulations, solution procedures and latest advances. European Journal of Operational Research, 283(1), 1-15. https://doi.org/10.1016/j.ejor.2019.05.017

Rachmawati, D., & Pakpahan, F. Y. P. (2020, 2020). Comparative analysis of the Kruskal and Boruvka algorithms in solving minimum spanning tree on complete graph 2020 International Conference on Data Science, Artificial Intelligence, and Business Analytics (DATABIA), 55–62.

Suhika, D., Muliawati, T., & Ruwandar, H. (2020). Optimalisasi Rencana Pemasangan Kabel Fiber Optic Di Itera Dengan Algoritma Prim. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 9(1). https://doi.org/10.24127/ajpm.v9i1.2597

Tomeczek, A. F. (2022). A minimum spanning tree analysis of the Polish stock market. Journal of Economics and Management, 44, 420-445. https://doi.org/10.22367/jem.2022.44.17

Usman, S., Wiranto, I., & Nurwan, N. (2022). Aplikasi Algoritma Floyd-Warshall untuk Mengoptimalkan Distribusi Listrik di PLN Kota Gorontalo. Research in the Mathematical and Natural Sciences, 1(1), 47-53. https://doi.org/10.55657/rmns.v1i1.24

Wamiliana, W., Usman, M., Warsito, W., Warsono, W., & Daoud, J. I. (2020). Using Modification of Prim’s Algorithm and Gnu Octave and to Solve the Multiperiods Installation Problem. IIUM Engineering Journal, 21(1), 100-112. https://doi.org/10.31436/iiumej.v21i1.1088

Downloads

Published

2025-06-29

How to Cite

Lusiani, A., Sartika, E., Nuryati, N., & Suhartini, I. (2025). Application of Prim Algorithm to an Electricity Network in Cimahi . Numerical: Jurnal Matematika Dan Pendidikan Matematika, 9(1), 122–131. https://doi.org/10.25217/numerical.v9i1.6072

Issue

Section

Artikel Matematika